
Docker &
Mesos/Marathon in
production at OVH

Balthazar Rouberol
https://ovh.to/6bRrkAn

1

https://ovh.to/6bRrkAn

About Docker at OVH
● 2014-2015: Home-made container orchestrator, Sailabove, based on LXC
● 2016: Switch to Docker & Mesos/Marathon
● 6 (soon 7) Mesos clusters:

○ Internal production: 2 (soon 3)
○ External production: 2
○ External gamma: 2

● At our peak:
○ 800 hosts
○ 3000 cores
○ 12TB RAM
○ 200TB disk

● 60 teams, ~2500 production containers

2

Problems we faced
● Docker instabilities and crashes
● Traceability of all network accesses established by containers
● Security rules enforcing
● No baked-in multi-tenancy in Marathon
● Incoming connections dropped due to marathon-lb/HAProxy reload stuck
● Partial network outages impacting production due to LB misconfiguration
● And many more, but I only have 30 minutes :)

3

What UnionFS to choose? The land of BUTs.
● devicemapper in loop file (default): works fine on dev machine, BUT

catastrophic performances in production
● AUFS: abandoned
● overlay: faster than devicemapper BUT high inode consumption
● overlay2: lower inode consumption BUT kernel > 4.0
● ZoL: Few production feedback that I know of. Good reputation BUT hard

to install on Linux. Will test.

We currently run overlay2, on kernel 4.3.0 without noticeable issues, except
regular image cleanup (which has an impact on docker).

4

Traceability of network accesses
● Each packet is marked by the kernel with a class id
● A class id defines a cluster / team / app
● Iptables rules with classid filters can be written where appropriate (u32)
● Prototype: Log all incoming/outgoing SYN packets with

https://github.com/google/gopacket

5

https://github.com/google/gopacket

Security rules enforcing
Home made mesos-docker-executor:

● No privileged mode
● Limited default CAPs
● Class ID injection

Of course, no SSH access on hosts running the containers

6

● No built-in support for multitenancy in marathon
● Possible Scala plugin integration, but poorly documenter
● 1 marathon / team (or client) → extreme load on Mesos

Marathon & Multi-tenancy

7

Multi-tenancy by API Proxy

8

Multi-tenancy by API Proxy, in a nutshell
● Override ~ all Marathon API calls to perform a virtual isolation
● VERB /marathon/<user>/v2/<path> + Basic Auth
● POST /marathon/<user>/v2/apps

○ /<app_id> → /<user>/<app_id>
○ Add label MARATHON_USERNAME=<user>

● GET /marathon/<user>/v2/apps
○ Add Label selector MARATHON_USERNAME==<user>
○ /<user>/<app_id> → /<app_id>
○ Hide MARATHON_USERNAME label

● GET /marathon/<user>/v2/apps/<app_id>
○ /<user>/<app_id> → /<app_id>
○ Hide MARATHON_USERNAME label

● ... 9

Multi-tenancy by API Proxy, limitations
● All apps are deployed, scaled, checked, etc, by a single Marathon cluster
● Global & progressive performance degradation
● Horizontal scaling to the rescue!

○ Deploy multiple Marathon clusters
○ Limit the number of different teams/users per cluster
○ We’ve yet to measure our limit

10

Load Balancer reload: marathon-LB

11

Load Balancer reload: marathon-LB’s approach
1. Block SYN for all bound ports (80, 443, 9000, service ports), one by one
2. Reload
3. Wait
4. Remove SYN drop rules

12

Load Balancer reload: marathon-LB’s approach
Problems:

● Incoming connections are dropped for a while
● Reload is not atomic (2 iptables rules/port/reload)
● SYN DROP/ACCEPT is blocking, for each port → can lead to catastrophic

situations

13

Load Balancer reload: enters sprint-LB
Same architecture than marathon-LB but:

● Supports multiple orchestrators
● Supports multiple LB (nginx & UDP, wink wink)
● Atomic and non-locking reload
● Soon to be open-sourced

14

Load Balancer reload: sprint-LB’s approach
● Start 2 HAProxy side by side
● Transactional NAT of each port (or range)
● Old HAProxy only handles previously open

connexions (conntrack), then dies
(SIGTTOU)

● New HAProxy handles new connections

Benefits:

● No connection drop
● No locking

15

Load balancing configuration
Goals of a load balancer:

● Balance traffic between multiple healthy applications
● Perform health checks to detect unhealthy applications
● Remove unhealthy applications from the backend
● Bring back healthy applications into the backend

Your SLI depends on a good load balancer configuration!

16

Guaranteeing a good SLI
● Quickly detect unhealthy applications: minimize errors
● Quickly detect healthy applications: spread load across applications

Health checks: regular checks performed on each application

● L4 (TCP): connection attempt
● L7 (HTTP/..): request and response analysis

17

Guaranteeing a good SLI
HAProxy configuration values

● redispatch=1: try a new application at each retry
● rise=1: one OK is enough for an app to be seen as healthy
● fall=1: one KO is enough for an app to be seen as unhealthy
● observe layer 4: each L4 connection is considered as a health-check

18

Thanks!
Questions?

19

